
A Deep Neural Approach to KGQA via SPARQL
Silhouette Generation

Sukannya Purkayastha*†

TCS Research, India
sukannya.purkayastha@tcs.com

Saswati Dana†, Dinesh Garg, Dinesh Khandelwal, G.P Shrivatsa Bhargav
IBM Research, India

{sdana027, garg.dinesh, dikhand1, gpshri27}@in.ibm.com

Abstract—Knowledge Graph Question Answering (KGQA) has
become a prominent area in natural language processing due to
the emergence of large scale Knowledge Graphs (KGs). Semantic
parsing based approach is the predominant direction to solve the
KGQA task where natural language question is translated into
a logic form such as SPARQL query. Recently Neural Machine
Translation (NMT) based approaches are gaining momentum in
order to translate natural language query to structured query
languages thereby solving the KGQA task. However, most of
these methods struggle with out-of-vocabulary words where test
entities and relations are not seen during training time. In
this work, we propose a modular two stage neural architecture
to solve the KGQA task. Stage-I of our approach comprises
a NMT-based seq2seq module that translates a question into
a sketch of the desired SPARQL query called a SPARQL
silhouette. Stage-II of our approach comprises a Neural Graph
Search (NGS) module which aims to improve the quality of
the SPARQL silhouette by detecting the right relations in the
underlying knowledge graph. Experimental results show that
we achieve substantial improvements and obtain state-of-the-
art performance or comparable results to the best performing
systems on two benchmark datasets. We believe, our proposed
approach is novel and will lead to dynamic KGQA solutions that
are well-suited for practical applications.

Index Terms—KGQA, entity/relation linking, SPARQL Silhou-
ette, seq2seq model, Neural Graph Search Module,

I. INTRODUCTION

A Knowledge Graph (KG) is a large collection of real
world facts that are stored in the form of triples such as
⟨Joe Biden, president,United States⟩, where, “Joe Biden” and
“United States” are the entities and “president” is the relation
between them. The task of Knowledge Graph Question An-
swering (KGQA) is an important application where a system is
required to answer a natural language question by leveraging
the facts present in the given KG. A KGQA system permits
users to retrieve information from a KG without any prior
knowledge about the KG schema or query languages such
as SPARQL, SQL, etc. The availability of large-scale KGs,
such as Freebase [1], DBpedia [2], YAGO [3], NELL [4],
Google’s Knowledge Graph [5], and their applicability in
various business applications have made KGQA an important
research area within NLP.

There are several approaches proposed to solve the KGQA
task. These approaches can be grouped into two broad cate-
gories:

* Work done while the author was an intern at IBM Research
† Equal contribution

1) Semantic parsing-based: In these approaches [6]–[8], a
natural language question is first transformed into a struc-
tured query language or logic form such as SPARQL,
SQL, λ-DCS [9], CCG [10]. The generated query is then
executed against the given KG to get the answer of the
given question.

2) Information extraction-based: These approaches [11]–[13]
extract a subgraph from the underlying KG which depends
on the entities/relations present in the question. Next,
they perform graph-based reasoning on the subgraph to
reach the final answer directly without generating any
intermediate logic form.

The popular semantic parsing-based approaches for
KGQA [14]–[16] are inherently modular and pipelined
in nature because they decompose the problem of logic form
generation into several subtasks: (i) question understanding,
(ii) linking mentions in the question text to the entities and
relations in the KG, (iii) generating the final logic form with
various constraints required to get the answer. Some of these
modules, for example, entity/relation linking, are generally far
from being perfect and hence induce a noticeable amount of
noise in the pipeline. Because of this, such approaches [17]
end up handling simple questions well where a single KG fact
is needed to answer the question. These approaches, however,
struggle while handling complex questions [18]–[20] that
require multiple facts. For complex questions, one of the key
challenges lies in the large sized search space when linking
entities and relations. Other drawback of the pipeline-based
approaches involve propagation of the noise from upstream
modules into downstream modules where, usually there is no
explicit provision to correct the noise.

NMT based approaches [21] have been emerging as an
alternative approach [22], [23] for semantic parsing with a
hope of alleviating the limitations of pipelined based ap-
proaches. These approaches are good at syntactic and semantic
understanding of the complex questions. However, NMT-
based approaches have their own limitations - (i) they require
large amount of training data, (ii) they cannot handle unseen
entities/relations at test-time due to their fixed vocabulary.
Motivated by these limitations, we propose a novel two-stage
neural approach for KGQA (see Figure 1). This approach
embraces the best of both the worlds – (i) using NMT for
handling complex questions, (ii) using masking technique

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-7
28

1-
86

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
55

06
4.

20
22

.9
89

22
63

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

Seq2Seq
Model

Who all are known
to play the Gibson

Guitar Corporation?

SELECT DISTINCT ?x WHERE
{

?x dbo:starring
dbr:Gibson_Guitar_corporation

}

Neural Graph
Search
Module

SPARQL Silhouette
Corrected SPARQL

SELECT DISTINCT ?x WHERE
{

?x dbp:notableInstruments
dbr:Gibson_Guitar_corporation

}Question

Fig. 1: Overview of our proposed two stage approach.

with entity/relation linking module to handle unseen enti-
ties/relations.

The Stage-I of our approach generates a sketch of the
target SPARQL for a given natural language question, we call
this sketch a SPARQL silhouette. In this stage, we propose
three different masking schemes to mask all the entities and
relations present in the input question. We however handle
the entity/relation linking separately via an off-the-shelf en-
tity/relation linker. We further leverage the masking scheme to
simulate the noise level in entity/relation linking process for
the purpose of ablation studies. Stage-II comprises a Neural
Graph Search (NGS) module. This module takes the SPARQL
silhouette as an input and reduces noise introduced by the en-
tity/relation linker in Stage-I. To demonstrate the effectiveness
of our approach, we simulate three levels of noise scenarios in
linking; noise-free, partly-noisy and fully noisy. We show that,
there is a substantial gap between performance numbers of
ideal and realistic linking scenarios. Finally integrating Stage-
II module with Stage-I boosts the performance significantly in
the realistic scenario to achieve state-of-the-art or competitive
performance as compared with the previous systems on two
benchmark datasets.

II. RELATED WORK

The vast body of literature that exists on the KGQA task
is nearly impossible to cover. One can refer to the survey
papers [24] for an in-depth account of KGQA literature.To
a large extent, semantic parsing is the predominant paradigm
in the KGQA literature. Semantic parsing-based approaches
can be classified into two categories: (i) neural, and (ii) non-
neural. Non-neural approaches [25]–[27] are somewhat dated
now and use handcrafted features and rules. As far as neural
semantic parsing approaches are concerned, they can be further
divided into two subcategories: (i) Non-NMT-based, (ii) NMT-
based.

A. Non-NMT-based Approaches

Pipeline-based approaches [14]–[16] break the problem of
semantic parsing a complex question [20], [28]–[30] into
more manageable subtasks such as question understanding,
entity/relation linking, logic form generation and use reusable
modules for solving the subtasks. In these approaches, all

intermediate modules need not be neural-based. Each of these
submodules introduces its own errors, which propagate to the
downstream pipeline. Another line of work [31]–[35] maps
the problem of semantic parsing on KG to a query graph (a
subgraph of KG) generation, which can be easily translated
into the SPARQL.

B. NMT-based Approaches

In the last few years, NMT-based approaches are being used
to translate natural language questions into SQL [36]–[38].
Recently, [22] compared various types neural architecture
and showed that CNN-based seq2seq model performs best to
generate SPARQL queries from natural language questions.
One limitation of their approach is that output vocabulary
for SPARQL generation is limited to the entities/relations
seen during training. As a result, their performance reduces
drastically if the overlap of entities and relations in the training
and test sets differ. This motivated us to incorporate masking
approach to efficiently handle unseen entities/relations during
test time. To the best of our knowledge, our work is the first
of its kind in solving KGQA task which considers multiple
relations and uses NMT based approach that can handle unseen
entities/relations by proposed noise simulator with various
masking strategies.

III. THE KGQA TASK

In KGQA, we are given a Knowledge Graph G comprising
of an entity set E , a relation set R, and a set of knowledge facts
F . The knowledge facts are expressed in the form of triples;
F = {⟨es, r, eo⟩} ⊆ E × R × E , where es ∈ E is known as
subject or head entity, eo ∈ E is known as object or tail entity,
and r is a relation which connects these two entities. These
entities (relations) form the nodes (edges) of the KG. The task
now is to identify the subset of entities from E that constitute
the answer of a given question Q in the natural language form.
The most common family of approaches for the KGQA task is
semantic parsing where, the given question Q is first translated
into a SPARQL which is then executed over the KG so as
to get the answer set. For developing a system to convert a
question into the corresponding SPARQL query, we are given
a set of training data {Qi, Si, Ai}ni=1, where Qi is a question

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

(in natural language text), Si is the SPARQL query, and Ai is
the answer set obtained by executing Si on G.

In this paper, we propose a two-stage system for KGQA.
In Stage-I, seq2seq module generates a SPARQL silhouette
with specific entities. Relations predicted in this module are
corrected by the neural graph search module in Stage-II.

IV. STAGE-I: SEQ2SEQ MODEL

Figure 2 shows various components of Stage-I of our
approach. We use external entity/relation linker to map surface
form mentions and linking. Based on the suggestion of linker,
noise simulator masks mentions and entities/relations in the
input question text and corresponding gold SPARQL for
the training data. Noise simulator employs different masking
schemes depending on the desired level of noise that we
wish to simulate. The masked question is used as an input
to the CNN-based sequence-to-sequence (seq2seq) module
which converts it into a SPARQL silhouette. Note, seq2seq
models have achieved state-of-the-art performance in machine
translation task [39] and they can be based on RNN, CNN,
or Transformer architectures. Our preliminary experiments
showed that CNN-based model performs (F1 score 21.46%
for transformer compared to 25.59% for CNN)1 better than
the transformer based model. This behavior is consistent
with the prior research [22] that has shown that CNN-based
seq2seq model performs best for translating natural language
to SPARQL query. Hence, we opted for a CNN-based seq2seq
model as our base model for Stage-I.

A. Noise Simulator and Masking

The purpose of designing noise simulator module is two-
fold: (i) To mask mentions and entities/relations in the question
text as well as SPARQL, (ii) To simulate varying levels of
noise in the entity/relation linking process. Masking helps
us in two ways: (i) handling test entities/relations that are
unseen during training, (ii) reducing vocabulary size as KGs
contain a large number of entities and relations. A simple
neural seq2seq model which translates natural language ques-
tion into a SPARQL query will struggle to output some of
the entities/relations during test time that are unseen during
training time and hence will not be available in the output
vocabulary. In the absence of linking and masking, our ele-
mentary experiment finds the performance of seq2seq model
to be quite low (F1 score 16%). Table I further corroborates
this behavior where we have captured the statistics about % of
entities and relations (i.e. properties and ontology in DBpedia)
in validation and test sets that are seen in the training set. This
suggests that entity/relation linker along with masking is an
important step for the seq2seq model. Here, we propose three
different types of masking schemes (Scenario A, B and C) and
describe them in subsequent subsections .
Scenario ‘A’, Noise-Free Linking: In this scenario, we
simulate an entity/relation linker that has 100% F1. We extract
all the entities/relations from the gold SPARQL and assume

1Because of space constraint, supporting results have been put within
parentheses

TABLE I: % of the entities and relations in val and test sets
that are available within train set’s gold SPARQLs.

Dataset Statistics Val Test

LC-QuAD-1
Entities (dbr) 52.3 46.8
Properties (dbp) 97.2 98.3
Ontologies (dbo) 96.5 94.6

QALD-9
Entities (dbr) 27.1 25.9
Properties (dbp) 0.0 16.9
Ontologies (dbo) 47.8 38.3

these as output of the linker (see Figure 3). Next we align these
entities (dbr) and relations (dbp and dbo) with the surface-
form in the given question. We observe that entities match
exactly with substrings in the questions most of the time (e.g.
Austin College in Figure 3). For relations, other than substring
match, we considered semantic similarity; e.g., a given relation
dbo:film is semantically best aligned to word movies in
the question. We use pre-trained fastext embeddings [40] to
represent words and relations and compute cosine similarity
between each word in the question and the given relation.
The highest-scoring word is considered as the aligned word.
Scenario ‘B’, Partly Noisy Linking: Purpose of scenario ’B’
is to allow partial noise in the entity/relation linking process.
For this, we first feed the natural language question into an
external entity/relation linker. The linker returns two objects:
(i) A set of surface form mentions for entities/relations in
the question text, and (ii) Linked entities/relations for these
mentions. We take linker’s output and find intersection of these
entities/relations with the entities/relations present in the gold
SPARQL. These common entities/relations are masked in the
SPARQL. Also, their corresponding surface forms are masked
in the question text. In order to mask the surface form in the
question, we use exact match and string overlap based Jaccard
similarity. Figure 4 illustrates this scenario.
Scenario ‘C’, Fully Noisy Linking: The goal here is to
simulate a completely realistic scenario where we rely entirely
on an external entity/relation linker. For this, we feed input
question to the entity/relation linker and get the suggested
surface form mentions and linked entities/relations. We mask
these suggested mentions using exact match and partial match.
Corresponding SPARQL query’s entities/relations are also
masked based on the suggestions. This scenario is depicted
in Figure 5.

B. Convolutional Seq2Seq Model

The pair of masked question and SPARQL query obtained
from the noise simulator is fed to a Convolutional Neural
Network (CNN) based seq2seq model [41]. As shown in
Figure 6, this model reads the entire masked question and
then predicts the corresponding masked SPARQL query
token-by-token in a left-to-right manner. This seq2seq model
consists of the following key components.
Input Embedding Layer: Both encoder and decoder consist
of an embedding layer that maps each input token to a

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

CNN-based
Seq2Seq Model

Entity Linker

Relation Linker

Noise
Simulator

SPARQL Silhouette Question

SELECT DISTINCT ?x WHERE
{

?x dbo:starring
dbr:Gibson_Guitar_corporation

}

Who all are known
to play the Gibson

Guitar Corporation?

SELECT DISTINCT ?x WHERE
{ ?x dbp:notableInstruments

dbr:Gibson_Guitar_corporation}

Gold SPARQL

Fig. 2: Components of Stage-I.

[Q] Name the mascot of Austin College?
[S] SELECT ?uri WHERE

{ dbr:Austin_College dbp:mascot ?uri }
Original Input

Masked Input

Embedding Based
Surface Alignment

[Q] Name the <r0> of <e0>
[S] SELECT ?uri WHERE

{ <e0> <r0> ?uri }

[Qm] name the <r0> of <e0> ?
[Sm] SELECT var_uri WHERE brack_open

<e0> <r0> var_uri brack_close

Fig. 3: An illustrative example for Scenario ‘A’: Noise-Free
Linking

[Q] Name the mascot of
Austin College?

[S] SELECT ?uri WHERE
{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker Entity and Relation Extraction

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

Intersection

dbr:Austin_College

Entity and Relation Masking

[Qm] name the mascot of <e0> ? [Sm] SELECT var_uri WHERE brack_open <e0>
<dbp_mascot> var_uri brack_close

Fig. 4: An illustrative example for Scenario ‘B’: Partly Noisy
Linking

point-wise summation of its word embedding and positional
embedding. The embedding of each word is initialized
randomly. In order to capture the sense of order, the model
is provisioned with the positional embedding.
Convolution + Pooling Layers: The token embeddings
obtained from the previous layer are fed to the multiple
convolution and pooling layers. Each convolution layer
consists of a 1-dimensional convolution followed by Gated

[Q] Name the mascot of Austin
College?

[S] SELECT ?uri WHERE
{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker Entity and Relation Extraction

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

Entity and Relation Masking

[Qm] <r0> the <r1> of <e0> ? [Sm] SELECT var_uri WHERE brack_open
<e0> <dbp_mascot> var_uri brack_close

Fig. 5: An illustrative example for Scenario ‘C’: Fully Noisy
Linking

Linear Units (GLU) [42]. Residual connections [43] are
added from input to the output of each convolution layer.
Multi-Step Attention: Each decoder layer comprises a
convolution layer followed by a multi-step attention layer.
This multi-step attention is used to find the attention
scores from a particular decoder state to the source tokens.
Attention between decoder state di (after ith layer) of the
last token in generated sequence so far and state zj of the
jth source element (after last encoder layer) is computed as:
aij = exp(di · zj)/

∑m
t=1 exp(di · zt) where, m is the number

of source elements. The context vector, ci, is now computed
as, ci = [

∑m
j=1 a

i
j(zj + ej)] + di where, ej is the input

embedding for the source element j.
Output Layer: Finally, output at a particular time
step is calculated over all the Z possible tokens,
P (zt+1|z1, . . . , zt, X) = softmax(WdL + b) where
P (zt+1|·) ∈ RZ , and W , b are trainable parameters. dL is the
decoder state of last target element at the last layer L. X is
the input sequence.
Training Loss: The model is trained using label smoothed
cross-entropy loss given by following expression (for single
training example) L(θ) = −(1/N) ·

∑N
n=1

∑Z
z=1 q(yn =

z|yn−1) · logPθ(yn = z|yn−1) where, N is the number of
words in output sequence and yn is the first n tokens of
output sequence. Pθ(yn = z|yn−1) is model’s probability to
output token z given yn−1 sequence generated so far. The
quantity q(yn = z|yn−1) is equal to γ if f(yn) = z and

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

Name the mascot of Austin College ?

𝑠 SELECT DISTINCT var_uri𝑠 Name the 𝑟0 of 𝑒0 ? /𝑠

Linker Noise Simulator

𝑠
Name

…
/𝑠

𝑑! = 512	

GLU

𝑠
Name

…
/𝑠

𝑑" = 768	

𝑠
SELECT

DISTINCT

𝑑! = 512	

GLU

𝑠
SELECT

DISTINCT

𝑑" = 768	
Attention

Scores

context vector

Linear Layer

encoder states decoder states

0.1 0.01 0.5 0.1 0.1

SELECT DISTINCT var_uri 𝑟0 𝑒0

Natural Language
Question

Input token seq

Output sequence
generated so far

Next
predicted

token

Initial (token + position)
embeddings

(Convolution + pooling)
layer #1

(Convolution + pooling)
layer #15

Output vocabulary

Fig. 6: A CNN-based Seq2Seq model for KGQA. The example here uses noise-
free linking scenario.

Fig. 7: Architecture of neural graph search
module. (a) Relation Classifier. This module
predicts relation for a given entity (b) On-
tology Type Classifier. This module predicts
rdf:type ontology class.

(1− γ)/(Z − 1) o/w, where γ ∈ [0, 1], γ > 1/Z.

V. STAGE-II: NEURAL GRAPH SEARCH MODULE

Our error analysis on output of Stage-I revealed that entity
linking performance is reasonably good but the same is not
true for relation linking in case of realistic scenario. Existing
literature [44], [45] also show enough evidences of achieving
high performance on the entity linking task, whereas relation
linking turns out to be harder due to the complexity of natural
language. Because of this, we have most of the entities within a
SPARQL silhouette generated by Stage-I as correct but the re-
lations are incorrect. This motivated us to design our proposed
neural graph search (NGS) module. The NGS module in
Stage-II takes a SPARQL silhouette as input and produces an
improved version of SPARQL by replacing incorrect relations.
This is a BERT-based module and its architecture is shown in
Figure 7. This module works as follows:
1) We consider each triple ⟨es, r, eo⟩ in the SPARQL silhou-

ette in which at least one of the entities is an existential
variable unless the silhouette is with rdf:type relation which
we handle separately. We prepare input in the following
format: [CLS] Q [SEP] [SUB (or OBJ)] [SEP] es (or eo).
Here, Q is the token sequence of input question text and
[SUB (or OBJ)] is a special token depending on whether
the grounded entity is in subject (or object) position (refer
Figure 7a). We also pass grounded entity (es or eo) as the
last element of this input. [CLS] and [SEP] are special
tokens from BERT vocabulary.

2) We feed above input sequence of tokens into the BERT
layer of graph search module. The output from the [CLS]
token, hCLS is passed through a linear layer followed by
a softmax layer. This softmax layer induces a probability
score pr for each relation r ∈ R in the given KG. While
training, we use the following loss function (given for
single example): ℓ = (1 − α) ∗ (ℓc) + (α) ∗ (ℓgs). Here,
ℓc denotes standard cross entropy loss between predicted
probabilities {pr}r∈R and the gold relation. The graph
search loss term ℓgs forces the predicted probabilities to
be low for all those relations which are invalid relations
(in the given KG) for corresponding input entity es (or eo)
in the input position (subject or object). ℓgs is the Binary
Cross-Entropy for logits followed by a sigmoid layer. For
this, we assume a uniform probability distribution over all
such valid relations and compute its cross entropy loss with
{pr}r∈R. α is a hyperparameter.

3) During inference, at softmax layer, we restrict the outputs
only to those relations r ∈ R which are valid relations for
the input entity as being subject or object. For example, if
input grounded entity is es then we restrict prediction to
only those relations r for which ⟨es, r, ?x⟩ is a valid triple
for some grounding of ?x. In DBpedia same relation can
exist in the form of ‘dbo’ and ‘dbp’ for a specific entity. In
such cases, we pick the ‘dbo’ version as these are curated
and mapped to the DBpedia ontology. Prediction is made
based out of 61623 relations available in DBpedia.

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

4) We have a separate version of the NGS module (refer
Figure 7b) if the relation r in a given triple is rdf:type.
Note, in DBpedia, a triple containing rdf:type relation looks
like this ⟨?x, rdf:type,CLASS⟩ where, ?x is a variable and
CLASS is the DBpedia ontology class of the entity ?x. For
such triples, input to NGS module is [CLS] Q. We need to
predict the corresponding ontology class, CLASS. DBpedia
ontology contains 761 classes and hence, in this model,
prediction is one of these 761 classes. This module is
trained with standard cross-entropy loss. An example of the
rdf:type classification would be to predict dbo:Country for
the question ‘Name the country with currency as Aureus?’.

VI. EXPERIMENTS AND RESULTS

Datasets: We work with two different KGQA datasets based
on DBpedia: LC-QuAD-1 [20] and QALD-9 [46]. We have
chosen these datasets as the nature of the datasets are very
different based on the way these were generated. LC-QuAD-
1 is template based and contains 5000 examples.We split
this dataset into 70% training, 10% validation, and 20% test
sets (same as the leaderboard). QALD-9 is a multilingual,
manually curated dataset. Questions in this dataset vary in
terms of reasoning nature (e.g. counting, temporal, superlative,
comparative, etc.) and the SPARQL aggregation functions.
This dataset contains 408 training and 150 test examples. We
split the training set into 90% training and 10% validation
sets.
Evaluation Metric: Performance is evaluated based on the
standard precision, recall, F1 score for KGQA systems. We
have used same evaluation metric as [47] and [46] for LC-
QuAD-1 and QALD-9 datasets respectively. We also measure
a metric called Answer Match (AM).
Answer Match (AM): For a question Q, when executing the
predicted SPARQL in the underlying KG, if we get Sp = Sg

then we say AM = 1 otherwise AM = 0. Here, Sg and Sp are
gold and predicted answer set respectively.
Baselines: We compare our approach with three baselines:
WDAqua [48], QAmp [47] and gAnswer [49], as these are
the only systems which consider equivalent setting like the
present work; realistic linking scenario and report accuracy
numbers on the whole test set of the corresponding datasets.
WDAqua is a graph based approach to generate SPARQL
based on predefined patterns. These SPARQL candidates are
then ranked. QAmp uses text similarity and graph structure
based on an unsupervised message-passing algorithm. gAn-
swer which is very specific to the QALD-9 dataset, is a graph
data driven approach and generates query graph to represent
user intention. WDAqua and QAmp are top entries in the LC-
QuAD-1 leaderboard 2 whereas, WDAqua and gAnswer in the
QALD-9 challenge [46].
Experimental Setup: For entity/relation linking we use Fal-
con [50] since this suits our requirements the best. We use
fairseq3 library for implementation of the CNN-based seq2seq

2http://lc-quad.sda.tech/lcquad1.0.html
3https://github.com/pytorch/fairseq

TABLE II: Test set performance on LC-QuAD-1 dataset.

Model
Type

Model
Name

AM Prec. Recall F1

Baseline WDAqua - 22.00 38.00 28.00
QAmp - 25.00 50.00 33.33

Stage-I
(Ours)

No Noise 82.88 83.11 83.04 83.08
Part Noise 41.34 42.40 42.26 42.33
Full Noise 24.92 25.54 25.64 25.59

Stage-I +
Stage-II)

w/o type 30.63 32.17 32.20 32.18
w/ type 34.83 37.03 37.06 37.05

model [41] comprising of 15 layers.We use Nesterov Ac-
celerated Gradient (NAG) optimizer. We experimented with
different values of hyperparameters and report results on
test set for the values yielding the best performance on the
validation set. Optimal values are as follows: learning rate
- 0.25 and 10−5 in Stage-I and Stage-II respectively, batch
size - 8 for both the stages, hyperparameter α in Stage-II
- 4 × 10−1 and 6 × 10−1 for the LC-QuAD-1 and QALD-
9 datasets respectively. For neural graph search module, we
work with a pre-trained BERT-base uncased model. It consists
of 12 transformer layers, 12 self-attention heads, and a hidden
dimension of 768. We use 2 Tesla v100 GPU for training our
model.
Results and Discussions: Table II and III capture the perfor-
mance of our approach in comparison with the state-of-the-
art on the LC-QuAD-1 and QALD-9 datasets. Our approach
achieves state-of-the-art performance in case of LC-QuAD-
1 dataset by an absolute margin of 3.72% F1. Our seq2seq
model can achieve upto 83.08% F1 for LC-QuAD-1 and
55.3% Macro F1 QALD for QALD-9 dataset if the en-
tity/relation linker were to be 100% correct. The gap between
the performance of No Noise linking (upper bound) and Full
Noise linking (lower bound) illustrates how the performance
of the entity/relation linker impacts the overall performance
of KGQA. Poor performance of Falcon on relation linking
(44.99% and 37.17% of Recall on test set of the LC-QuAD-
1 and QALD-9 datasets respectively) also justifies this gap.
Furthermore, the performance of (Stage-I + Stage-II) demon-
strates we gain 11.46% in F1 and 4.2% in answer match (AM)
by absolute margin for LC-QuAD-1 and QALD-9 respectively
compared to the full noise scenario of Stage-I. Our results
in the last two rows of both the tables (Stage-I + Stage-II)
are under full noise setting for entity/relation linking. Despite
of very less training data and presence of specific type of
queries in QALD-9 dataset, our purely neural model is able
to outperform the prior methods with substantial improvement
in terms of Macro Precision.

By manually analysing examples, we find that our method
can learn complex patterns (Table IV) of queries including
imperative, interrogative, questions with count (aggregation)
and involving multiple relations. The proposed model is a
simple neural approach which does not need question interpre-
tation step unlike QAmp and also can learn complex templates

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Test set performance on QALD-9 dataset. Here
Mac. means Macro and Rec. means Recall.

Model
Type

Model
Name AM

Mac.
Prec.

Mac.
Rec.

Mac.
F1

QALD

Baseline WDAqua - 26.1 26.7 28.9
gAnswer - 29.3 32.7 43.0

Stage-I
(Ours)

No Noise 29.9 80.4 42.1 55.3
Part Noise 13.1 63.9 28.7 39.6
Full Noise 11.1 82.6 23.0 36.0

Stage-I +
Stage-II)

w/o type 15.3 59.4 26.1 36.2
w/ type 15.3 59.4 26.1 36.2

without the need of a large collection of templates unlike
WDAqua. As our seq2seq model translates natural language
query to SPARQL, it does not need to resolve any ambiguity
in the natural language questions to reach to answer unlike
approaches (gAnswer) that generate query graphs. Another
advantage of our method is it is KG agnostic.
Error Analysis: We randomly picked 50 examples where
our model predictions are wrong. We see that, there are four
types of scenarios where our model fails to generate correct
SPARQL: (i) two very similar looking relations (refer Table
V)(ii) inconsistencies in KG (iii) gold SPARQL comprising
infrequent SPARQL keywords (iv) classes of rdf:type belong
to classes other than DBPedia classes. The performance num-
bers in the last two rows of Table III are same because in the
dataset there are only two such gold examples with rdf:type
classes with YAGO ontology that our model does not support.
Further analysis shows that the reason for QALD-9 having low
upper bound is its training set size being too small (408) and
a large variety of SPARQL keywords within a small training
set. There are only 32 queries with FILTER and 4 queries with
GROUP BY keyword in the training set of 408 to represent
comparative/superlative questions which is too small for any
neural model to learn from. Training on more data can further
improve the performance. Because of the inconsistencies in
KG, presence of classes in YAGO ontology and infrequent
SPARQL keywords, generated SPARQL silhouette in QALD-
9 dataset has errors other than incorrect entity/relations.
Therefore, Stage-II offers much smaller gain for QALD-9.
Combining LC-QuAD-1 training data with QALD-9 did not
improve the performance of the QALD-9 dataset (29.60% F1
score compared to the 36.0% when trained on same domain)
because the nature of the SPARQL is very different in both
the datasets. Our transfer learning and supporting results with
other details are provided here.4

VII. CONCLUSION

We have proposed a simple sequential two-stage NMT-
based approach to solve the KGQA task. Stage-I translates
natural language query to SPARQL silhouette. To train seq2seq

4https://www.dropbox.com/sh/knur0yq1x58lrma/AADz1BaxPy
DciBKWzIO2qdRqa?dl=0

TABLE IV: Anecdotal examples where our model predictions
are correct.

Question Predicted SPARQL

Is Peter Piper Pizza in
the pizza industry?

ASK WHERE
{
dbr:Peter Piper Pizza dbo:industry
dbr:Pizza
}

Which governor of
Winston bryant is also
the president of Carl
Stokes?

SELECT DISTINCT ?uri WHERE
{
dbr:Winston Bryant dbp:governor ?uri
dbr:Carl Stokes dbp:president ?uri
}

How many other home
stadium are there of
the soccer club whose
home stadium is Luzh-
niki Stadium?

SELECT DISTINCT COUNT(?uri) WHERE
{
?x dbp:homeStadium dbr:Luzhniki Stadium .
?x dbo:homeStadium ?uri
}

TABLE V: Examples of relations where our model struggles
to disambiguate.

Gold Relation Predicted Relation

placeOfDeath deathPlace
mouthPlace sourceRegion
associatedBand associatedMusicalArtist
product products

module, we introduced various noise scenarios with masking
schemes to handle unseen entities/relations and reduce the
vocabulary size. We also introduce Neural Graph Search Mod-
ule in Stage-II to improve the quality of SPARQL silhouette
generated in the realistic scenario at Stage-I. We demonstrate
that integrating Stage-II module with Stage-I improves the
overall performance of the system in the realistic scenario
to achieve state-of-the-art performance or comparable results.
We believe, this research demonstrates great potential of NMT-
based approaches to solve the KGQA task and opens up a new
research direction. In future, we plan to explore an iterative
graph search approach where entity linking performance is
also low.

ACKNOWLEDGEMENT

We would like to acknowledge IBM Cognitive Computing
Cluster (CCC) for providing resources to carry out various
experiments.

REFERENCES

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: A collaboratively created graph database for structur-
ing human knowledge. In Proc. of ACM SIGMOD, pages 1247–1250,
2008.

[2] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick Van Kleef, Sören Auer, et al. DBpedia – A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web,
6:167–195, 2015.

[3] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek.
YAGO 4: A reason-able knowledge base. In Proc. of ESWC, pages
583–596, 2020.

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

[4] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carl-
son, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter,
M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In
Proc. of AAAI, 2015.

[5] Thomas Steiner, Ruben Verborgh, Raphaël Troncy, Joaquim Gabarro,
and Rik Van de Walle. Adding realtime coverage to the google
knowledge graph. In Proc. of ISWC, 2012.

[6] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing.
In Proc. of ACL, pages 1415–1425, 2014.

[7] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale semantic
parsing without question-answer pairs. Transactions of the Association
for Computational Linguistics, 2:377–392, 2014.

[8] Li Dong and Mirella Lapata. Language to logical form with neural
attention. In Proc. of ACL, pages 33–43, 2016.

[9] Percy Liang. Lambda dependency-based compositional semantics. arXiv
preprint arXiv:1309.4408, 2013.

[10] Luke S Zettlemoyer and Michael Collins. Learning to map sentences
to logical form: structured classification with probabilistic categorial
grammars. In Proc. of UAI, 2005.

[11] Xuchen Yao and Benjamin Van Durme. Information extraction over
structured data: Question answering with freebase. In Proc. of ACL,
pages 956–966, 2014.

[12] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over
freebase with multi-column convolutional neural networks. In Proc. of
ACL, pages 260–269, 2015.

[13] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston.
Large-scale simple question answering with memory networks. arXiv
preprint arXiv:1506.02075, 2015.

[14] Kuldeep Singh, Andreas Both, Arun Sethupat, and Saeedeh Shekarpour.
Frankenstein: A platform enabling reuse of question answering compo-
nents. In Proc. of ESWC, pages 624–638. Springer, 2018.

[15] Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim
Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina
Cornelio, Saswati Dana, Achille Fokoue, et al. Question answering over
knowledge bases by leveraging semantic parsing and neuro-symbolic
reasoning. arXiv preprint arXiv:2012.01707, 2020.

[16] Shiqi Liang, Kurt Stockinger, Tarcisio Mendes de Farias, Maria Anisi-
mova, and Manuel Gil. Querying knowledge graphs in natural language.
Journal of Big Data, 8(1):1–23, 2021.

[17] Michael Petrochuk and Luke Zettlemoyer. SimpleQuestions Nearly
Solved: A New Upperbound and Baseline Approach. In Proc. of
EMNLP, pages 554–558, 2018.

[18] Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou,
and Wei Xu. Dataset and neural recurrent sequence labeling model for
open-domain factoid question answering. arXiv:1607.06275, 2016.

[19] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian Haarmann,
Anastasia Krithara, Michael Röder, and Giulio Napolitano. 7th open
challenge on question answering over linked data (QALD-7). In
Semantic Web Evaluation Challenge, pages 59–69, 2017.

[20] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens
Lehmann. LC-QuAD: A corpus for complex question answering over
knowledge graphs. In Proc. of ISWC, pages 210–218, 2017.

[21] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. In Proc.
of ICLR, 2015.

[22] Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph. Neural machine
translating from natural language to sparql. Future Generation Computer
Systems, 117:510–519, 2021.

[23] Ruichu Cai, Boyan Xu, Xiaoyan Yang, Zhenjie Zhang, Zijian Li,
and Zhihao Liang. An encoder-decoder framework translating natural
language to database queries. arXiv preprint arXiv:1711.06061, 2017.

[24] Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. A survey on complex knowledge base question answering:
Methods, challenges and solutions. In Zhi-Hua Zhou, editor, Proc. of
IJCAI, pages 4483–4491, 2021. Survey Track.

[25] Luke Zettlemoyer and Michael Collins. Online learning of relaxed ccg
grammars for parsing to logical form. In Proc. of EMNLP, pages 678–
687, 2007.

[26] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic
parsing on freebase from question-answer pairs. In Proc. of EMNLP,
pages 1533–1544, 2013.

[27] Dennis Diefenbach, Kamal Singh, and Pierre Maret. Wdaqua-core0: A
question answering component for the research community. In Semantic
Web Evaluation Challenge, pages 84–89, 2017.

[28] Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao.
Constraint-based question answering with knowledge graph. In Proc.
of COLING, pages 2503–2514, 2016.

[29] Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gür,
Zenghui Yan, and Xifeng Yan. On generating characteristic-rich question
sets for qa evaluation. In Proc. of EMNLP, pages 562–572, 2016.

[30] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens
Lehmann. Lc-quad 2.0: A large dataset for complex question answering
over wikidata and dbpedia. In Proc. of ISWC, pages 69–78, 2019.

[31] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao.
Semantic parsing via staged query graph generation: Question answering
with knowledge base. In Proc. of ACL, pages 1321–1331, 2015.

[32] Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh
Chakraborty, Asja Fischer, and Jens Lehmann. Learning to rank query
graphs for complex question answering over knowledge graphs. In Proc.
of ISWC, pages 487–504, 2019.

[33] Jiwei Ding, Wei Hu, Qixin Xu, and Yuzhong Qu. Leveraging frequent
query substructures to generate formal queries for complex question
answering. In Proc. of EMNLP, pages 2614–2622, 2019.

[34] Yunshi Lan and Jing Jiang. Query graph generation for answering multi-
hop complex questions from knowledge bases. In Proc. of ACL, pages
969–974, 2020.

[35] Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin Qi. Formal query
building with query structure prediction for complex question answering
over knowledge base. In Proc. of IJCAI, pages 3751–3758, 2020.

[36] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating
structured queries from natural language using reinforcement learning.
arXiv:1709.00103, 2017.

[37] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir R. Radev.
Typesql: Knowledge-based type-aware neural text-to-sql generation. In
Proc. of NAACL-HLT, 2018.

[38] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li,
and Zhihao Liang. An encoder-decoder framework translating natural
language to database queries. In Proc. of IJCAI, pages 3977–3983, 2018.

[39] Pengcheng Yin and Graham Neubig. A syntactic neural model for
general-purpose code generation. In Proc. of ACL, pages 440–450, 2017.

[40] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135–146, 2017.

[41] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. Convolutional sequence to sequence learning. In Proc. of
ICML, 2017.

[42] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier.
Language modeling with gated convolutional networks. In Proc. of
ICML, pages 933–941, 2017.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. of CVPR, pages 770–
778, 2016.

[44] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke
Zettlemoyer. Scalable zero-shot entity linking with dense entity retrieval.
In Proc. of EMNLP, November 2020.

[45] Belinda Z. Li, Sewon Min, Srini Iyer, Yashar Mehdad, and Wen tau Yih.
Efficient one-pass end-to-end entity linking for questions. In Proc. of
EMNLP, November 2020.

[46] Ngonga Ngomo. 9th challenge on question answering over linked data
(qald-9). language, 7(1):58–64, 2018.

[47] Svitlana Vakulenko, Javier David Fernandez Garcia, Axel Polleres,
Maarten de Rijke, and Michael Cochez. Message passing for complex
question answering over knowledge graphs. In Proc. of CIKM, pages
1431–1440, 2019.

[48] Dennis Diefenbach, Andreas Both, Kamal Deep Singh, and Pierre Maret.
Towards a question answering system over the semantic web. Semantic
Web, pages 421–439, 2020.

[49] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu, Wenqiang He,
and Dongyan Zhao. Natural language question answering over rdf: a
graph data driven approach. In Proc. of ACM SIGMOD, pages 313–324,
2014.

[50] Ahmad Sakor, Kuldeep Singh, and M E Vidal. Falcon: An entity and
relation linking framework over DBpedia. In Proc. of CEUR Workshop,
volume 2456, pages 265–268, 2019.

Authorized licensed use limited to: National Chung Hsing Univ.. Downloaded on October 20,2022 at 08:13:37 UTC from IEEE Xplore. Restrictions apply.

